Kernel based two-sample and independence test
by Heiko Strathmann for Shogun Machine Learning Toolbox
Statistical tests for dependence or difference are an important tool in data-analysis. However, when data is high-dimensional or in non-numerical form (strings, graphs), classical methods fail. This project implements recently developed kernel-based generalizations of statistical tests, which overcome this issue. The kernel-two-sample test based on the Maximum-Mean-Discrepancy (MMD) tests whether two sets of samples are from the same or from different distributions. Related to the kernel-two-sample test is the Hilbert-Schmidt-Independence criterion (HSIC), which tests for statistical dependence between two sets of samples. Multiple tests based on the MMD and the HSIC are implemented along with a general framework for statistical tests in SHOGUN.